
 

 

 

 

 

 

 

 
Journal of Mining and Metallurgy, 56 A (1) (2020) 37 - 46 

 
#Corresponding author: bdeo@iitbbs.ac.in 
 

doi: 10.5937/JMMA2001037C 

 

 
DETERMINATION OF SURFACE MOISTURE AND PARTICLE SIZE DISTRIBUTION OF COAL USING 

ONLINE IMAGE PROCESSING 
 

P. Choudhary1, T. Maloo2, H. Parida2, P. Khatri2, B. Deo2#, P. Chattopadhyay3 
 

1IIT Bhubaneswar, School of Mechanical Sciences, Odisha, India 
2IIT Bhubaneswar, School of Minerals, Metallurgical and Materials Engineering, Odisha, India 

3Tata Steel Long Products Limited, Joda, Odisha, India 
 

(Received: April 3, 2020; Accepted: June 29, 2020) 

 
Abstract 
 
Production of sponge iron requires iron ore, coal, and dolomite. The quality of sponge iron is affected by particle size variation 

and moisture content of the feed materials. In the present work, image processing was used to detect both particle size and moisture 
variation of the feed materials on an online basis. Noise and signal irregularities in images were removed by image analysis through 
MATLAB. Continuous (online, every 30 minutes) images were taken over a coal bed which was moving on a conveyor belt. It was 
a challenge to determine the particle size distribution and surface moisture of coal online. The distribution of reflectivity of coal in 
the image varied according to the moisture content and particle size. It affected the intensity information of the image which was 
then used to predict the surface moisture content of the coal. The method is now being used successfully in a processing plant. 
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1. Introduction 
 
The rotary kiln for sponge iron production uses iron 

ore (62-65% Fe) and inferior quality coal with the 
following properties: up to 25% ash, particles size smaller 
than 3 mm reaching up to 70%, and surface moisture 
content up to 15%. There are three rotary kilns at TATA 
Steel Long Product Limited (TSLPL), Keonjhar, Odisha, 
India which is an associate company of TATA steel, India. 
TSLPL has a total production capacity of +425,000 TPA. 
Due to the economical nature, there is no means of 
control on particle size and moisture for the raw materials 
used in sponge iron production. Therefore, with the 
purpose of optimal kiln operation, it is necessary to 
monitor the particle size distribution and moisture content 
of the coal continuously because these are the principle 
features for the processing operation strategies. The 
policy opted by the control unit is such that it varies other 
useful parameters to compensate for the effect of particle 
size and moisture on quality. Previously, the moisture 
content and particle size data were obtained in the 
laboratory by using conventional methods, which were 
only limited to three times a day and hence inadequate 

for continuous process control requirements. It may be 
noted that the present work is focused on the surface 
moisture of coal and not the internal (structural or fixed) 
moisture content of coal. 

A specific range of particle size of coal is best suited 
for reducing the iron ore, but in actual practice, the size 
range keeps on changing from lot to lot. If a finer size 
fraction is larger than the coal, it burns faster which leads 
to an increase in the kiln temperature in particular 
sections followed by the formation of accretion on the 
walls of the kiln. The fines (-3 mm particles) are unable to 
reach the required distance inside the kiln from the coal 
throw pipe. This causes starvation of coal in some 
regions. Inadequate reduction atmosphere leads to poor 
quality of sponge iron (a low Fe content in the sponge). 
Figure 1 shows the effect of particle size on quality: if the 
size of coal is larger than the specified range (i.e. less 
fines) then it will not burn in time leading to a loss in the 
internal temperature of the kiln [1, 2] in some regions. It 
also affects coal consumption per ton of iron ore. The 
regions where fine particles burn early experience a local 
increase in temperature and this affects the overall quality 
of sponge iron, Figure 1. Image processing is a suitable 
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method for determining particle size online. If the particle 
size is known in advance then the operating parameters 
can be adjusted effectively. 

 

 
Figure 1 Effect of the percentage of -3 mm fraction in 

coal on the quality of sponge (% Fe) from the  
rotary kiln [3] 

 
Variation in moisture also, along with variations in 

coal particle size, affects the quality of sponge iron 
produced. At high temperatures, the moisture present in 
the coal reacts with carbon and produces carbon 
monoxide and hydrogen by an endothermic reaction: 

 
H2O (g) + C → CO (g) + H2 (g)                                                  

 
Even though the reducing gases (CO + H2) are 

produced, and hydrogen is more efficient as a reducing 
agent for iron oxide than CO, due to the sudden fall in 
internal temperature the overall reduction efficiency 
decreases, which directly reduces the quality of the 
product.  

Machine vision is already becoming an integral part 
of our industries. It assists the enterprises in obtaining 
quality products by deciding optimal feed inputs. In 
material processing industries, it is essential to know the 
characteristics of the raw material for process control. 
Machine vision can be used to reduce laboratory time by 
providing the information continuously. The use of image 
processing for particle size and moisture determination 
has been reported earlier. Some researchers have 
reported different techniques to extract moisture and 
particle size information using image processing [2 - 17]. 
But the property which was used for moisture 
determination was the variation in reflectivity of coal 
surface with moisture [3, 7, 12]. Kontny in his paper 
showed the methods using laser triangulation and image 
processing for estimation of volume and size distribution 
of aggregate transported on conveyor belts using the 
LabVIEW environment [15]. Zhang showed a method to 

overcome the error due to the overlapping particles by 
fitting the results of overlapping particles calculated using 
statistical interval method [10]. Zhang and Yang showed 
different color and texture features (total thirty-eight 
features). Later, genetic algorithms (GA) and SVM were 
used to determine the most effective features for ash 
content prediction [13, 17]. Thurley showed for limestone 
(a) a method using a laser scanner to determine the 
overlapped and non-overlapped fragments and (b) the 
particle size measurements with the difference in size 
ranges [9]. 

This paper shows that instead of simply using the 
aggregate of intensity, additional features like mean, 
variance, skewness, and Kurtosis can be incorporated to 
better represent the variation and distribution of intensity 
throughout the image. The energy and entropy of the 
grayscale image represent uniformity of the grayscale 
intensity level [4 - 13]. Out of these, the most effective 
parameters for moisture detection are reported in the 
present work. A distinctive feature of the present work is 
that the image processing experiments were done with 
LED light and the same image was used to predict the 
moisture and particle size of the coal on a moving bed.  

Video camera and the lights were placed above the 
moving bed for on-line measurements. Optimal height for 
the best and simultaneous determination of moisture and 
particle size was determined during the thorough 
experiments. The samples were preserved and 
transported in sealed bags so that no moisture was lost 
in-transit (the samples meant for the laboratory part). 
Multiple trials were done with the same sample to check 
the consistency.  

In actual plant practice, the information obtained on 
moisture and particle size is now fed on-line to the 
process control system of the rotary kiln [14]. 
Mathematical models are used for advising appropriate 
actions to be taken for adjusting the control parameters 
like air flow rate, coal feed rate, the rotation speed of kiln, 
ore to coal ratio, etc.  

The present work also constitutes a part of the overall 
program at TSLPL on the implementation of “Industry 4.0” 
(or “smart factory”). 

 
2. Particle size distribution of coal 
 
In the present work a good coal is one which has: a 

typical moisture content of 8.3% ±1%, and particle size 
distribution of 2.1% of +20 mm; 1.5% of +18 mm; 3.2% of 
+15 mm; 14.7% of +8 mm; 12.1 of +5 mm; 9.7% of +3 
mm; 10.3% of +2 mm; 12.9% of +1 mm; 33.5% of -1 mm. 
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The objective of image analysis is to find out the total % 
of -3 mm fractions in the coal, and not the entire particle 
size distribution.  

Initial laboratory experiments were done at a fixed 
height of a camera of 400 mm, placed normal to the 
sample surface. An image (194 x 176 pixels) was taken 
under the LED light and was used for particle size 
distribution analysis. As a counter check, a conventional 
sieve analysis was also done. MATLAB was used for 
image analysis. The image was a 3D matrix with red, 
green, and blue as its three dimensions [15].  

In the previous work [3], the process of analysis was 
divided into four steps as follows: Step 1: RGB to BW 
image conversion for dimension reduction; Step 2: an 
attempt was made to smoothen the shape of the particle 
surface in the binary image; Step 3: The area of the 
particle was calculated; Step 4: classification of particles 
was based on an area of 3 mm particles at the same 400 
mm distance and cross-validation was done with the 
sieve analyzed data [16]. It was observed that the particle 
size prediction was not accurate when the percentage of 
fine particles was high; when the percentage of particle 
size of less than 3 mm increased, the error increased as 
well. After creating a boundary around each particle (the 
red marked boundary in Figure 2), it was observed that 
the fine particles which were positioned very close to 
each other or the particles which overlapped each 
another appeared as a single particle causing an 
anomaly in prediction. This anomaly was reduced in the 
present work by tuning and training by various MATLAB 
functions (discussed in the next section). 

 

 
Figure 2 Clustered distinct coal particles forming a 

single particle with larger area creating irregularity in 
prediction (highlighted in yellow boundary) 

 
3. Tuning and training MATLAB functions 
 
In order to reduce prediction errors [3], boundaries 

were constructed around each particle using MATLAB 
functions. For example, ‘bwlabel’ was used for labeling 
each particle completely separated from one another. 
‘Regionprops’ was used for numbering each particle and 
finding the centroid coordinate. ‘Bwboundries’ was used 
as the label from ‘bwlabel’ to create a boundary around 
each particle. ‘Regionprops’ was also used for tuning the 
parameters to create an effective boundary around each 
particle [16]. Structuring and noise removal were done 
using morphological operations from MATLAB as shown 
in Figure 3. 

 
Figure 3 Before (A) and after (B) morphological operation 
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For example, ‘bwareaopen’ connected the group of 
pixels with other groups; ‘bwmorph’ helped to give 
structure to the particles based on a majority (sets a pixel 
to 1 if five or more pixels in its 3 × 3 neighborhood were 
‘1’; otherwise, it set the pixel to ‘0’). 

The identification of individual particles, as mentioned 
earlier, became difficult when clustering of particles 
occurred. For such cases, it became necessary to draw 
the line of segmentation and these operations came 
under ‘bwdist’ and ‘watershed’ [16]. 

1. The function ‘bwdist’ computed the Euclidean 
distance-transform of the binary image BW. For each 
pixel in BW, the objective of ‘bwdist’ was to calculate the 
Euclidean distance. It helped to find out the rate of 
change of intensity within the specified region.  

2. The function ‘watershed’ was used for 
segmentation of particles by treating the image as a 
surface wherein the light pixels represented high 
elevations and the dark pixels represented low 
elevations; hence it was necessary to create a gradient 
using ‘bwdist’. 

If these functions were used directly, then over-
segmentation occurred, as shown in Figure 4. 

To remove over-segmentation from the image, the 
image had to be modified before applying ‘watershed’. 
The reason for this was that each local minimum (maxima 
was at the boundary of a particle) became a catchment 
basin; the catchment basin was a local or regional 

minimum in the image which was generally at the center 
of a particle. By using ‘bwdist’, a distance transformation 
was created. 

 

 
Figure 4 Over-segmentation after using the watershed 

function 

 
The separation line between different regions of 

group’s pixels, where overflow took place, was called the 
segmentation line [16]. The reason behind over-
segmentation was the formation of multiple tiny local 
minima where each pair of minima led to the formation of 
a segmentation line, as shown in Figure 5. 

 

 
Figure 5 Before and after segmentation (joined particle are segmented) 

 
To overcome over-segmentation, the tiny local 

minima needed to be filtered out using ‘imextendedmin’. 
The distance transform was modified in a way that no 
minima occured at the filtered-out locations. This was 

called ‘minima imposition’ and was implemented via the 
function ‘imimposemin’; ‘minima imposition’ prevented 
the formation of tiny minima. The complete sequence of 
image processing is shown in Figure 6. 
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Figure 6 Complete pipeline of image analysis 

 
The model obtained with the above procedure 

provided the lowest error. The error was evenly 
distributed for all types of samples whether the 
percentage was high or low. This new approach 
decreased the mean error by a factor of 10. It is 
suggested that this approach for particle size 
determination may be used for multiple raw materials 
irrespective of the size and shape of a particle. Almost no 
tuning would be needed. Results of the particle size 
estimator with and without watershed were compared in 
Table 1 for 19 different samples. This method is now 
regularly used for on-line determination of particle size at 
TSLPL. 

4. Surface moisture content of coal 
 

The surface reflectance of coal varied with its surface 
moisture content. This difference in surface reflectivity of 
coal with different surface moisture contents thus resulted 
in different pixel intensity information in its image. This 
pixel intensity information can, therefore, be used to 
predict the moisture content of coal. The intensity 
information of images was calculated using the 
MATLAB code. As an example, the difference in 
intensity information of two coal samples with 
different moisture contents is shown in Figure 7(a) 
and 7(b). 

 

Initial image 

BW image (with 
morphological operation) 
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Table 1 Error in particle size with watershed and without 
watershed 

SAMPLE 
NO. 

Error with 
Modified 

Watershed 

Error without 
Watershed 

1 5.66 3.51 

2 1.35 -7.87 

3 5.47 -5.66 

4 4.95 -7.44 

5 -1.29 2.34 

6 -0.92 15.55 

7 0.78 -12.19 

8 -1.86 -6.97 

9 -2.73 -12.59 

10 -13.01 -18.31 

11 -3.5 -10.42 

12 -10.06 0.96 

13 -9 -13.52 

14 2.5 -9.32 

15 -4.4 -3.87 

16 2.71 -18.99 

17 1.29 -19.22 

18 2.5 -10.13 

19 6.48 -7.47 

  Mean error: -0.69 Mean error: -7.45 

  
Standard 

deviation: 5.47 
Standard 

deviation: 8.58 

 

All the images were made up of three primary 
colors red, green, and blue. The variation of intensity 
information with surface moisture was studied by 
formulating two different MATLAB based models. 
When the image was loaded in the workspace of 
MATLAB, it was uploaded as a 3D matrix of red, 
green, and blue intensity information. In the first 
model, the RGB image was converted into a grayscale 
image in which the 3D matrix was converted to an 
equivalent 2D matrix. This 2D matrix of a grayscale 
image was, in turn, used to predict the surface 
moisture content of coal. 

In the second model, instead of converting the RGB 
(3-D matrix) of the image to an equivalent 2-D matrix, the 
red, green and, blue intensity information was directly 
used to predict the surface moisture of coal. From the red, 
green, and blue intensity, DN (Digital Number) values 
were calculated, as suggested in [11]. The DN value of 
each pixel with red, green, and blue intensity represented 
as ‘r’, ‘g’, and ‘b’ respectively was calculated in the 
following way: 

 
DN = (0.2999 × r) + (0.5870 × g) + (0.1140 × b)               

 
The calculated DN values were used to predict the 

surface moisture of coal. No significant difference was 
observed in the results of the grayscale image and RGB 
images, Figure 8. 

 
Figure 7 Images were taken in flashlight: (a) scale of intensity information for dry coal (b) scale of intensity 

information for moist coal 
 

Three different light sources LED light, normal light 
(tube light 40 watts), and IR lamp were used to select the 
best one. In each case samples of 0.02 kg coal with 
moisture varying from 0% (dry coal), 2-3%, 7-8%, 12-
13%, 17-18%, and 22-23% were prepared in the 
laboratory. Five images of each sample were taken 
with a camera normal to the surface at a height 400 

mm, under a light source. The variation of intensity 
information in the image with its respective moisture 
content was studied. In LED light and IR lights, the 
trend can be observed up to 25% moisture, Figure 
9(b). Whereas in the case of normal tube light, the 
trend saturated after approximately 12% moisture, 
Figure 9(a). 

 

(a) Scale of intensity 
information in dry coal 

 
(b) Scale of intensity 

information in moist coal 
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Figure 8 Plots of moisture (range 1.5% - 13%) with (a) sum of intensity using grayscale images and, (b) the DN 

values using RGB images 
 

 
Figure 9 Sum of intensities under (a) normal and (b) LED light 

 
It can be observed from Figure 9 (a) and (b) that by 

using LED light the moisture can be detected up to 25% 
compared to approximately 12% by using normal tube 
light. 

 
5. Improvement and its observation 
 
An apprehension was that the texture and the 

intensity distribution pattern throughout the image may 
play a significant role in improving the model for 
predicting the moisture in the coal through machine vision 
[13, 17]. A list of features is mentioned below and out of 
these the most effective parameters were selected for 
moisture determination by considering intensity, digital 
number, intensity distribution, and texture. 

 

p(b) =
N(b)

N
                                                                                         (1) 

 

μ = ∑ b×p(b) 255
 b=0                                                                              (2) 

 

σ2 = ∑ (b-μ)2×p(b) 255
 b=0                                                                 (3) 

 

s = ∑  
[(b-μ) 3 × p(b)]

σ 3
 255
 b=0                                                                     (4) 

 

K = ∑  
[(b-μ) 4 × p(b)]

σ 4
 255
 b=0                                                                    (5) 

 

G = ∑  [p(b)] 2 255
 b=0                                                                            (6) 

 

H = - ∑  p(b) × loglog[p(b)] 255
 b=0                                               (7) 

 

L = 
N100

N
×100%                                                                                (8) 

 
The parameter, ‘b’ represented grayscale intensity 

level varying from 0 to 255, ‘N(b)’ was a total number of 
pixels having ‘b’ pixel intensity and ‘N’ was the total 
number of pixels in the image. Mean (Eq. 2), variance 
(Eq. 3), skewness (Eq. 4), and kurtosis (Eq. 5) were the 
four-momentums a.k.a. color distribution momentums. ‘G’ 
(Eq. 6) and ‘H’ (Eq. 7) showed the energy and entropy of 
the grayscale image which represented the histogram 
uniformity of the grayscale intensity level. ‘L’ (Eq. 8) was 

 % Moisture % Moisture 

 

(a) Under normal tube light up to 
23% moisture 

(b) Under LED light 

% Moisture % Moisture 
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the probability of the top hundred intensity level in the 
grayscale image (0-255). 

The laboratory trials for simultaneous determination 
above-mentioned parameters required tuning with 
respect to actual moisture. Experiments were done to 
cover different types of conditions. The samples with 
moisture content of 6%, 8%, 10%, and 14% were 
prepared with uniform particle size. The image was 
captured for a 0.06 kg coal sample by using a 13-
megapixel camera at a height of 300 mm. 

Based on the R2 value of each feature (Table 2) on  

different samples of particle size: 1 mm, 3 mm, 6 mm, 8 
mm, and mixture of: 10% 3 mm + 90% 8 mm, 30% 3 mm 
+ 70% 8 mm, 50% 3 mm + 50% 8 mm, 70% 3 mm + 30% 
8 mm, a selection was done of feature based on R2 value.  

It can be seen from Table 2 that most effective 
parameters are Variance, S, K, and L. Another 
requirement was that the features should not be affected 
by particle size. Among all the effective features, the 
parameter which was not affected by the variation of 
particle size was skewness (S). Figure 10 shows a plot of 
skewness (S) with particle size and moisture. 

 
Table 2 R2 values after fitting feature (Mu, Variance, S, K, G, H, L) over moisture for different particle sized sample 

Particle size Mu Variance S K G H L 

100% 1 mm 0.88 0.87 0.88 0.92 0.23 0.53 0.75 

100% 3 mm 0.87 0.96 0.86 0.86 0.95 0.64 0.92 

100% 6 mm 0.37 0.77 0.88 0.90 0.37 0.54 0.52 

100% 8 mm 0.79 0.85 0.86 0.84 0.46 0.62 0.87 

10% 3 mm - 90% 8 mm 0.59 0.54 0.60 0.56 0.34 0.45 0.55 

30% 3 mm – 70% 8 mm 0.53 0.77 0.86 0.81 0.48 0.67 0.60 

50% 3 mm – 50% 8 mm 0.54 0.93 0.83 0.91 0.77 0.93 0.96 

70% 3 mm – 30% 8 mm 0.79 0.84 0.87 0.85 0.41 0.04 0.70 

 

 
Figure 10 (a) The features (i.e. S) with particle size, (b) S vs moisture for one of the particle size distribution sets 

(i.e. 70% 3mm and 30% 8mm) among all eight sets for demonstration 
 
6. Conclusion 
 
The experiments were first carried out in the 

laboratory and then on an industrial scale. Optimal 
placement and height of light source and camera were 
determined so that both moisture and particle sizes could 
be determined simultaneously from a single image. The 

percentage of particles of -3 mm size was determined 
with the mean inaccuracy of ±9%. Moisture content on 
the surface of coal, varying in the range of 0-20% 
moisture, was determined with an accuracy of ±10% of 
the moisture value. It is found that the coal moisture 
saturated after 12%. In industry, the particle size and 
moisture vary frequently. The modified method of present 
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work offers a simple solution to measure both moisture 
and particle size online from a single accurate 
measurement but a practical limitation is that the moisture 
should not exceed 12%. 
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Izvod 
 
Proizvodnja sunđerastog gvožđa zahteva rudu gvožđa, ugalj i dolomit. Na kvalitet sunđerastog gvožđa utiče veličina čestica i 

sadržaj vlage u sirovini. U ovom radu je korišćena onlajn obrada slika za određivanje veličine čestice i promene vlage u sirovini. 
Nepravilnosti šuma i signala na slikama su uklonjeni putem analize slika u MATLAB okruženju. Slike sloja uglja na pokretnoj traci 
su snimane u kontinuitetu (onlajn, na svakih 30 minuta). Određivanje raspodele veličine čestica i vlage na površini uglja onlajn je 
predstavljalo izazov. Raspodela reflektivnosti uglja na slikama je varirala zavisno od sadržaja vlage i veličine čestica. Intenzitet 
obrade informacija sa slika je takođe uticao na postupak, koje su nakon obrade korišćene za predviđanje sadržaja vlage na površini 
uglja. Ovaj metod se danas uspešno koristi u postrojenju za preradu. 
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