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Abstract 
 
Estimation of Rock Quality Designation (RQD) distribution with low value of error is crucial for mining excavation based on 

geomechanical data. This paper proposes an application of an Inverse Distance Weighted Anisotropic Method (IDWAM) based on 
combined variograms to construct RQD block model in Kahang Copper-Molybdenum (Cu-Mo) porphyry deposit, Central Iran, 
using subsurface data. To do this, an appropriate voxel size was calculated and then RQD variography was carried in horizontal 
and vertical directions. In addition, Deere and Miller rock classification was used to classify RQD block model for a final open pit 
interpretation. Finally, correlation between results for RQD estimated derived via the IDWAM and raw data was carried out using 
jackknife method. The results obtained by the combination of IDWAM and experimental variogram showed that the excellent RQD 
zones are located in the central and North Western parts of this area. 
 

Key words: Rock Quality Designation (RQD) distribution; Inverse Distance Weighted Anisotropic Method (IDWAM); 
Combined variograms; Kahang deposit. 

 
1. Introduction 
 
Assessment of Rock Quality Designation 

(RQD) is a crucial aspect for mineral excavation, 
resource modelling and mine planning with huge 
cost implications for the design and the mining of 
each block such as ore or waste tonnage [1-3]. 
These are calculated using the dimension and 
density of each block. The results are assessed to 
identify a final pit slope angle and consequent pit 
stripping ratio [4-7]. Numerical models in 
geosciences have been created and consequently 
utilised to better interpret the variability of 
geological parameters such as lithology, ore-type, 
alteration and mineralogy or for a better 
understanding of the different attributes such as 
density, rock mass characterisation and RQD [8-
10]. However, the classical statistical methods for 
delineation of populations from a background level 

would be for example, a histogram analysis, box 
plot, summation of mean and standard deviation 
coefficients and median. These are not considered 
overly accurate due to the fact that these statistical 
methods consider only the frequency distribution of 
information while not paying attention to the spatial 
variability [11, 12]. In other words, the classical 
statistical plots (i.e., histograms) are based on the 
data abundance distribution and cannot quantify 
the spatial positions of parameters such as RQD 
[13-16]. As a result, numerical modelling of rock 
characteristics is a difficult task and requires 3D 
modelling for better interpretation of the problems 
found in a mining operation such as rock 
discontinuities, planar failure, circular failure, 
wedge failure and toppling failure [17, 18]. 

The earliest model regarding the quantitative 
description of in-situ block size distribution (IBSD) 
was the Rock Quality Designation, which was 
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proposed by [19]. Priest and Hudson (1976) 
applied the RQD method to scanline survey data 
with respect to an analytical relation between RQD 
and the discontinuity frequency resulted from a 
scanline survey [20]. A borehole or a scanline are 
by their nature one dimensional. As a result, RQD 
values calculated using bore hole data or a 
scanline survey are influenced by the orientation in 
which the measurements are taken (horizontal or 
vertical) so the method does not consider 
calculation for the other direction [21, 22]. In order 
to overcome the dependence of RQD on 
orientation, Kazi and Sen (1985) proposed the use 
of the Volumetric Rock Quality Designation (V. 
RQD) which is a three-dimensional parameter [23]. 
This encloses the proportion of the volume of intact 
matrix rock blocks, equal to or higher than 0.001 
m3 in size, which can be associated with the 
average volume of a matrix block and the number 
of matrix blocks per m3. To do this, the V.RQD is 
calculated by summation of the volumes of intact 
blocks divided by the total rock mass volume which 
is expressed as a percentage. However, the 
proposed model is limited to the estimation of the 
average block volume rather than the IBSD [19, 
23]. Palmstrom (1985) proposed different empirical 
equations to link Volumetric Discontinuity Count for 
RQD (known as Jv RQD) data and linear fracture 
frequency [24]. He suggested that there is a 
correlation between the in-situ block size and Jv is 
represented in a figure incorporating various 
measurements of the block size or degree of 
jointing (e.g., density of joints, RQD, block volume 
and joint spacing). However, this model can only 
estimate a rough upper and lower range of block 
sizes and therefore has restricted practical 
applications [25]. Şen and Eissa (1992) derived 
values for Jv for RQD and block volumes of 
different shapes such as bars, plates and or prisms 
quantity [23]. This model which was proposed by 
Şen and Eissa (1992) provides a simple tool for 
rock engineers without the need for recourse to 
theoretical calculations. However, the block volume 
in this model is given in terms of average block 
size so it cannot describe the block size distribution 
[26]. 

Techniques for selecting a theoretical function 
to describe rock mass characteristics based on 
RQD data are unsatisfactory, as mentioned above. 
As a result, an approach to introduce an analytical 
model to help achieve 2D and/or 3D maps for 
interpreting the distributions of measured RQD is 
needed. To do this, geostatistical methods can be 
used for interpolation and estimation of different 
regional variables (RQD in this scenario). 
Employment of a proper estimation method 
regarding geometry and geological properties as 
well as drilling patterns for different ore deposits is 
a fundamental issue in resource estimation [27-31]. 
Linear/ non-linear Kriging methods and Inverse 
Distance Weighted (IDW) have been widely utilised 
for block modelling in mineral exploration [32-34]. 
This paper aims to introduce an application of 
''Inverse Distance Weighted Anisotropic Method 
(IDWAM)'' to create an RQD block model in 
Kahang Cu-Mo porphyry deposit, central Iran. The 
obtained RQD block model is validated via the 
Deere and Miller rock classification (Table 1) to 
suggest an optimised final pit slope. 

 
Table 1. Classification of Rock Quality Designation, 
Deere and Miller rock classification (1966) [19] 

TERM RQD 

very poor <25 

poor 25-50 

fair 50-75 

good 75-90 

excellent 90-100 

 

2. Geological setting of the Kahang Cu-
Mo porphyry deposit 

 

The Kahang deposit is located about 73 km NE 
of Isfahan in central Iran. The deposit is situated in 
the Cenozoic Urumieh-Dokhtar magmatic belt 
extending from NW to SE Iran, as depicted in Fig. 
1 [35-37]. This deposit is mainly composed of 
Eocene volcanic-pyroclastic rocks, which were 
intruded by quartzmonzonite, monzogranite to 
dioritic intrusions in Oligo-Miocene rocks (Fig. 1). 
The extrusive rocks include tuffs, breccias and 
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lavas. The existing lavas in this area have dacitic to 
andesitic composition. The main criteria aspects for 
determining detection of mineralised zones are 
their index ores minerals. Index ores which consist 
of chalcopyrite and pyrite for hypogene zone, . 
Furthermore, chalcocite, bornite and covellite for 
are index minerals for supergene enrichment zone. 
and malachiteMalachite, azurite, tenorite and 
cuprite occur for within oxidation zone [38]. Studies 
Investigation of the pattern of zonation in the 

eastern part of the Kahang deposit show indicates 
that the most significant major mineralisation (in 
terms of ore zone size and geometry) is hypogene 
zone which containing includes a high percentage 
volumes of chalcopyrite accompanied byand pyrite. 
The major main alteration zones of are potassic, 
phyllic, argillic and propylitic types were 
accompanied by thewith vein to veinlets fillings of 
quartz, quartz-magnetite and Fe-hydroxides [39-
40]. 

 

 
Figure 1. a) Geological map of the Kahang study area, scale: 1:10,000, b) structural map of Iran, showing the 

Urumieh-Dokhtar volcanic belt [35], and c) 3D lithology model of the Kahang eastern part [41] 

 
3. Methodology 

 
In this deposit, 14979 core samples were 

determined from 42 boreholes with total depth of 
~22,000 m in the deposit for RQD analysis. 
Secondly, the subsurface data, including 
coordinates of drillcores, azimuth and dip 

(orientation) and RQD values (measured) was 
generated via RockWorksTM software package. 
Then, topographical features of the deposit were 
formed into a 3D geological model (Fig. 2). Finally, 
geostatistical studies were conducted and 
subsequently, the IDWAM combined with 
variography was proposed in order to build the 
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RQD block model based on the dataset (raw data). 
The final block model was produced by applying an 
upper and lower filter using RockWorksTM 
software, based on the topographical surface data 
(Fig. 2) and borehole data collar heights. Those 
voxels located above the upper (based on 
topography) and below the lower and bed rock 
(based on collar heights) are not considered into 
the RQD block model construction [3, 42-44]. The 
Kahang deposit was modelled with 489,927 voxels 

and each voxel has a dimension of 4 m × 4 m × 10 
m, corresponding the project dimensions of 600, 
660 and 780 m, in the X, Y and Z directions, 
respectively. This has been done using statistical 
characteristics of the deposit geometrical 
particulars consisting of mean, median and median 
absolute deviation (MAD) [27, 31, 45, 46]. For 
validation purposes between raw and estimated 
data, jackknife analysis was utilised. 

 

 
Figure 2. The locations of drill cores with lithological units within the Kahang deposit and its 3D surface topography 

[31] -Dokhtar volcanic belt [35], and c) 3D lithology model of the Kahang eastern part 

 
3.1. Inverse Distance Weighted Anisotropic 

Method (IDWAM) 
 
Inverse Distance (ID) is a common gridding and 

estimation method. Following this, the value 
assigned to a voxel is a weighted average of either 
all of the data points or a number of directionally 
distributed neighbours. The value of each of the 
data points is weighted with respect to the inverse 
of its distance from the voxel [17, 30, 31]. 

Inverse Distance Weighted Anisotropic method 
(IDWAM) is an interpolation of scattered points 

(RQD samples in this scenario) that estimates 
voxel values by averaging the values of sample 
data points in the neighbourhood of each 
processing voxel. IDWAM has a critical assumption 
that the interpolating surface is mostly influenced 
by the nearby points and less by the more distant 
points. The interpolating surface is a weighted 
average of the scatter points and the weight 
assigned to each scatter point diminishes as the 
distance from the interpolated point to the 
scattered point increases. The main advantage of 
the IDWAM is to produce a smooth and continuous 
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grid and does not exaggerate extrapolations 
beyond the given data points [32]. Therefore, the 
IDWAM is recommended for geochemical mapping 
where the data boundaries (RQD populations) are 
critical for threshold-based target separation [19]. 
The range of RQD values will be smaller than the 
raw data range meaning that highest RQD values 
will be less than the maximum of raw data, and the 
lowest grade values will be greater than the 
minimum data point [47]. A general form of finding 
an interpolated value u at a given point x based on 
samples 𝑢𝑖 =  𝑢(𝑥𝑖) for 𝑖 = 1,2,… ,𝑁 using 
IDW is an interpolating function: 

 

𝑢(𝑥) =

{
  
 

  
 ∑𝜔𝑖(𝑥)𝑢𝑖

𝑁

𝑖=1

, 𝑖𝑓 𝑑(𝑥, 𝑥𝑖) ≠ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖

∑𝜔𝑖(𝑥)

𝑁

𝑖=1

    , 𝑖

𝑢𝑖 ,                 , 𝑖𝑓 𝑑(𝑥, 𝑥𝑖) = 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖

 (1) 

 
where 

𝜔𝑖(𝑥) =
1

𝑑(𝑥,𝑥𝑖)
𝑝         (2) 

x denotes an interpolated (arbitrary) point, xi is an 
interpolating (known) point, d is a given distance 
(metric operator) from the known point xi to the 
unknown point x, N is the total number of known 
points used in interpolation and p is a positive real 
number, called the power parameter (e.g., an 
exponent of “2” = Inverse Distance Squared, “3” = 
Inverse Distance Cubed). The greater the value of 
the exponent, the less influence distant control 
points will have on the assignment of the voxel 
value. 

The disadvantages of conventional IDW 
methods are choice of weighting function which 
may introduce ambiguity especially where a fixed 
search radius requires a neighbourhood distance 
and a minimum or maximum number of points. 

 
4. Statistical characteristics 
 

Figure for the original data sets used for RQD 
values has been generated using MATLAB 
software, as depicted in Fig. 3. In this deposit, 
14979 RQD samples have been measured from 42 

boreholes carried out in the deposit (Fig. 3). RQD 
histogram provides a means for quickly evaluating 
the range of density and RQD values for a selected 
data set without creating a 3D solid model in order 
to illustrate the highest, lowest, sum, or average 
data values [6, 9, 31]. These histograms are used 
to read a single column of data (RQD or density) 
from a data set to determine the frequency or 
percentage of the total number of measurements 
for that variable/attribute that falls within each user-
defined grouping. The RQD histogram is not 
normally distributed which follows a bimodal 
distribution, with average of 48% (Fig. 4). 

 

 
Figure 3. 3D maps for RQD (%) original dataset 

 

 
Figure 4. RQD histogram based on raw data for the 

Kahang porphyry deposit 
 

As a result, there are two main populations with 
values of <25% and >90% for RQD which illustrate 
that there are two classifications of rock qualities 
(poor and excellent) with respect to the Deere and 
Miller RQD classification (Table 1). In addition, with 
respect to the RQD histogram, the greatest 
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frequency of the RQD data corresponds to the 
excellent rocks within the deposit which will result 
in the highest stability of the final pit slopе. 

 
5. Block modelling 
 
Selecting an accurate voxel size for a 

reserve/resource block model is important for 
minimising errors [30, 47]. This issue has been 
investigated for estimated block model utilising 
various geostatistical methods such as ordinary 
kriging (OK) and IDW. Results achieved by the 
estimation methods are associated with the 
identification of voxel size in block modelling [27, 
48]. Utilising a larger voxel size will maximise the 
averaging effect in the estimated block model in 
terms of concentrations. Additionally, a smaller 
voxel size will show more details, but potentially 
more error in an anisotropic environment [31, 49]. 
Furthermore, huge voxel size in the block model 
changes the higher or lower RQD values of RQD 
block model by smoothing of these points with high 
or low values within a large voxel. As a result, it is 
important to allocate an optimal voxel size 
considering the deposit geometry and drilling 
pattern (Figs 2 and 3) [50-53]. David (1970) 
proposed an applicable method for an operation 
based on geometrical particulars for different ore 
deposits and grid drilling [27]. Accordingly, voxel 
dimensions are determined as follows: 

Length and width of each voxel is equal to 
between half and quarter of the distance between 
the drill cores according to along the least 
variability deposit. 

Height of each voxel is delineated due to the 
type of the deposit. In ‘massive’ deposits such as 
magmatic deposits (e.g., porphyry deposits), the 
parameter is equal to the height of excavating 
benches in the open pit mines [3, 31]. 

The 2D map of 42 boreholes drilled in the 
Kahang deposit was constructed by RockWorks™ 
v.15 software (Fig. 5). As can be seen, the grid 
drilling pattern within this deposit is not 
homogeneous and systematic [17]. As a result, the 
Kahang deposit was modelled with 489,927 voxels; 
each voxel having a dimension of 4×4×10m in the 

X, Y and Z directions based on the geometrical 
properties of the deposit and grid drilling 
dimensions [27]. The RQD 3D model is evaluated 
by IDWAM, which can improve the interpolation of 
voxel values (RQDs) that lie between data point 
clusters and can be useful for modelling drill-hole 
based data in different types of deposit [51]. 

 

 
Figure 5. Location of boreholes sampled for density and 

RQD 

 
Directional and non-directional searching in this 

method can improve the interpolation of voxel 
values that lie between data point clusters and be 
useful for modelling drill-hole based data in the 
stratiform and massive ore deposits. In this paper, 
a combination of IDWAM and variography has 
been used in order to generate a block model in 
terms of RQD values based on the following 
criteria: 

1- The grid drilling pattern is irregular and non-
systematic (Figs 2, 3 and 5), with an especially 
high drilling density in the NE part of the deposit, 
and low density in the NW part (e.g., two isolated 
boreholes, as depicted in Fig. 5). Moreover, the 
grid drilling pattern has an anisotropic geometrical 
shape. 

2- There are too many scattered drill holes in 
the marginal parts of the deposit which leads to a 
lack of data. 

3- Trends of RQD values in X, Y and Z show 
that there is no association between ore grade and 
X-Y location or depth within the deposit (Fig. 6), 
indicating again that “Universal Kriging” is not 
appropriate for this deposit. 
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(a) 

 
(b) 

 
(c) 

Figure 6. Scatter plots for correlation between RQD (%) and coordinates: (a) RQD values trend 
in X; (b) RQD values trend in Y and (c) RQD values trend in Z 
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6. Application of IDWAM 
 

For RQD, an experimental variogram in 
horizontal (with lag spacing of 15 m) and vertical 
(with lag spacing of 8 m) orientations was 
produced via MATLAB software with respect to log 
transformation of RQD values (raw data), as shown 
in Fig. 7. From this, the horizontal (Azimuth: 0 and 
Dip: 0) and vertical (Azimuth: 0 and Dip: -90) 
ranges for RQD are 120 m and 270 m, 
respectively. The theoretical variogram for RQD is 
as follow: 

 
𝛾𝑅𝑄𝐷  (ℎ) = 135.71 + 190 𝑠𝑝ℎ (20, 20, 20) (3) 

+499.88 𝑠𝑝ℎ (120, 120, 270) 
 

3D block model for RQD was generated by 
IDWAW using the RockWorksTM software 
package (Fig. 8). The horizontal and vertical 
ranges of RQD, 120 m and 270 m, respectively 
with respect to Equation 3 based on the conducted 
variograms (Fig. 7), were imported into the 
horizontal and vertical distance cut-offs in the 
“Solid Modelling Options” of the software. In order 
to achieve this, the following tasks in their relative 
order were carried out: 

The Weighting Exponent value was determined 
as being equal to 2 in order to prompt to enter a 
real number value for the Inverse-Distance 
exponent. Number of neighbouring points were 
defined between 3 and 15 data points that were to 
be used when computing the voxel value. The 
horizontal and vertical ranges (known as ‘Cut-offs 
Distances’ in the RockWorksTM software) were 
recognised based on the combined variograms 
with lags’ spacing of 15 m and 8 m for horizontal 
and vertical directions (Fig. 7 and Equation 3 with 
respect to the theoretical variograms). Following 
this, 3D block model for RQD was generated by 
IDWAM, as depicted in Fig. 8. 

According to RQD block model in Kahang 
porphyry deposit, the RQD value for excellent 
rocks (RQD > 90) is situated in the central and NW 
parts of the deposit. Voxels including good (75 < 
RQD < 90) and fair (50 < RQD < 75) rocks are 
located in the central, eastern and NW parts of the 

deposit according to the RQD block model and 
classification of Rock Quality Designation, Deere 
and Miller rock classification (1966) [19] (Fig. 8 and 
Table 1). 

 

 
Figure 7. Experimental and theoretical variogram for 

RQD 
 

 
Figure 8. RQD block model in Kahang porphyry deposit 

determined using estimated data 
 

7. RQD Spatial Distribution Models with 
Reliance on Deere and Miller 
Classification 

 
The RQD block model (Fig. 8) is delineated to 5 

populations with respect to Deere and Miller rock 
classification (1966; Table 1) for better 
understanding of RQD spatial distribution within the 
generated block model. To do this, the RQD block 
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model was distinguished using a mathematical 
filter facility within the RockWorksTM software 
which is called “Boolean data type”. As a result, the 
studied 3D model (Fig. 8) was allocated with binary 
codes (zero or one). Consequently, allocated 

zones (voxels) with RQD values with the code 
number of zero are removed and the zones with 
the code number of one will remain and appeared 
in the 3D models (Fig. 9). 

 
(a) 

 
(c) 

 
 
 
 
 
 
 

 
(b) 

 
(d) 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
        (e) 

 

Figure 9. RQD populations within the Kahang deposit based on thresholds defined from Deere and 
Miller rock classification: a) very poor zones, b) poor zones, c) fair zones, d) good zones and 

e) excellent zones 
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Based on the Fig. 9a, the majority of the 
deposit consists of very poor zones which is 
scattered within the Kahang deposit. As can be 
seen from Fig. 9b, poor zones are distributed within 
the most parts of Kahang deposit especially in the 
NE part. The fair and good zones with RQD values 
of 50-75 and 75-90, respectively, are present along 
NE-NW trend, as depicted in Figs 9c and 9d. 
Excellent zones in terms of RQD occur in the 
central and NW parts of the deposit (Fig. 9e). 

 
8. Validation Processes 
 
There are so many interdependent subjective 

decisions in a geostatistical study that it is a good 
practice to validate the results obtained by the 
estimation method (IDWAM in this scenario) prior 
to any production run. The generated block model 
is validated by re-estimating known values under 
implementation conditions, including the variogram 
model, estimation method and search strategy, as 

close as possible to those of the forthcoming 
production run [53-55]. For validation propose of 
the estimation, jackknife was used. The term 
jackknife applies to resampling without 
replacement, i.e., when alternative sets of data 
values are re-estimated from other non-overlapping 
data sets. The jackknife analysis in the Kahang 
deposit indicates that the correlation coefficient 
between original data and RQD estimated is +0.78, 
as shown in Fig. 10. In this figure, the diagonal of 
the square plot (black line) and the linear 
regression (blue line) was derived and calculated 
using RockWorksTM program. The jackknife 
analysis in the Kahang deposit for RQD data 
indicates that the correlation between original data 
and estimated RQD via IDWAM is over +0.7. In this 
figure, the diagonal of the square plot (black line) 
and the linear regression (blue line) has a small 
angle and difference. However, there are some 
numbers of unexplained variances. 

 
 

 
Figure 10. Correlation chart between original and estimated data using jackknife resampling 
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9. Conclusions 
 
Results achieved by the proposed IDWAM 

estimation with combined variogram indicated a 
good correlation equal to 78% between RQD 
estimated and raw data. Therefore, it may be 
resulted that the proposed method can be applied 
for interpolation of geomechanical data in different 
types of ore deposits while dealing with non-
uniform grid drilling like what it is in Kahang 
deposit. The RQD block model obtained by the 
proposed estimator illustrate that the excellent 
zones considering RQDs higher than 90% occur in 
the central and NW parts of the deposit. In addition, 
the good zones with RQD values between 75-90% 
are present in the central, NE and NW parts of the 
studied area. It is believed that a final pit slope 
geometry and ultimate pit limit depend on the 
geomechanical properties such as RQD. However, 
an awareness of the spatial variability of 
parameters such as RQD can be used to 
investigate geotechnical characteristics. This can 
then be utilised to assess potential slope stability 
and be incorporated into a geotechnical risk model 
for the final pit geometry. Regions of high RQD 
may be targeted as offering greater potential for 
increased slope angles or locations for siting of 
critical haul roads. Regions of lower RQD should, 
be avoided for final pit limits. From a slope stability 
point of view, it may be expected that anyone 
examining RQD block model would consider at 
least multiple domains for slope stability 
assessments. However, this is highly 
recommended that more geotechnical 
characterisations are necessary to be examined for 
any potential influence of the 3D fracture network 
and any major discontinuity-controlled instability. 
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Izvod 
 
Procena RQD raspodele stena sa malom verovatnoćom greške je presudna za eksploataciju rude na osnovu geomehaničkih 

podataka. U ovom radu je primenjena IDWAM metoda koja se zasniva na kombinovanim variogramima za izradu RQD blok 
modela za porfirsko ležište bakra i molibdena (Cu-Mo) u Kahangu, Centralni Iran, gde su korišćeni podaci o podzemnom sloju. 
Prvi korak je bio izračunavanje odgovarajuće veličine voksela, a zatim je izvršena RQD variografska analiza u horizontalnom i 
vertikalnom pravcu. Pored toga je korišćena i Dirova i Milerova klasifikacija stena za klasifikaciju RQD blok modela pre konačnog 
prikaza površinskog kopa. Poslednji korak je bio upoređivanje rezultata za RQD model dobijenih na osnovu IDWAM metode i 
sirovih podataka prilikom kojeg je korišćena jackknife metoda. Rezultati dobijeni kombinacijom IDWAM metode i 
eksperimentalnog variograma su pokazali da se odlične RQD zone nalaze u centralnom i severoistočnom delu ove oblasti. 
 

Ključne reči: RQD raspodela; IDWAM metoda; Kombinovani variogrami; Ležište u Kahangu. 
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