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Abstract  
 

In this paper a simulated annealing based algorithm has been presented to locate additional exploratory 

drillholes based on the data obtained from the previous exploration phases. For this purpose, use has been made of a 

new criterion, namely the information value resulted from the exploratory drillholes. This criterion is based on the 

statistical value of information approach and is a logarithmic function of the kriging variance of the estimated block. 

The required codes for the use of this algorithm have been developed in the Matlab software. Also, a case study has 

been done in Sungon copper mine for its cross validation. 
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1. Introduction 

 

The number of the additional drillholes 

drilled to improve the deposit certainty is 

limited because of the high drilling costs. This 

limitation has caused extensive study to be 

carried out in the recent three decades 

regarding the location of the additional 

drillholes [1-7] and also evaluation of the data 

obtained from the additional drilling [8]. The 

methods presented for the optimum locating 

of additional drillholes are different combina-

tions of such optimization methods as the 

mathematical optimization [1], branch and 

bound [2, 4], simulated annealing [4, 6, 7] and 

genetic algorithm [5] with geostatistical 

principles. These methods can be classified in 

two groups: 1) those that have modeled and 

solved the problem two dimensionally [1, 2] 

and 2) those have done it three dimensionally. 

Only Soltani and Hezarkhan, 2011 [7] have 

solved the problem for directional drillholes; 

the rest [1-6] have assumed all the drillholes 

to be vertical. In all the previous studies use 

has been made of minimizing the kriging 

variance as the objective function and the 

solution of the problem depends on the 

characteristics of the deposit spatial structure, 

the initial drillholes locations and the 

preliminary assumptions made for the 

solution. Soltani and Hezarkhani, 2011 [8] 

proposed some functions for the evaluation of 

the statistical as well as the real value of 

information after studying the effects of the 

addition of the data obtained from drilling. 

Effort has been made in this paper to present 

an algorithm for the determination of the 

optimum location of the additional drillholes 

using the combination of the statistical value 

of information function and the simulated 

annealing method. 
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2. Statistical value of information 

obtained from additional drilling 

 

Information theory is a branch of applied 

mathematics and electronics engineering that 

deals with quantifying the information. The 

history goes back to Claude Shannon’s studies 

about transmission, receiving and optimal 

storing of data and information [9]. This 

theory is the basis for the quantitative 

measuring of information and it also studies 

different capacities of communication systems 

and the processed data. Numerous other 

activities have been done regarding the use of 

the information theory in such fields as the 

statistical inference, language processing and 

coding in different sciences. Information has a 

special meaning in the “theory of 

information” which is different from what it 

means in daily conversations. In the 

mathematical theory of information, only the 

surprising aspect of information is considered 

and its meaningfulness is not given any 

considerations [10]. 

According to the theory of information, if 

X is a random uncertain variable or a vector 

of such a variable and f(x) is the probability 

density function, then uncertainty about X 

may be stated by entropy H as follows [11]: 

 )(log)()( xfxfXH b   

In this theory, the basis for the logarithmic 

function “b” is usually taken equal to 2 [9] 

and the entropy value is stated in bit units 

[10]. 

Suppose variable x in block Xi is not 

directly measurable, but it may be measured 

based on the measured variable in the samples 

taken from drillhole Y. Then, the value of 

information obtained from drillhole Y in 

estimating block Xi can be found, based on 

the mutual information relation, as follows 

[12]: 

)|()(),( YXHXHXYI iii    

2.1. Value of information before any 

drilling activities 

 

When there has been no exploratory 

activity, H(x) and H(X|Y) are equal and 

H(Xi)-H(Xi|Y)=0; therefore, I(Y, X)=0. Under 

such conditions, we can determine H(X) or 

the primary existing entropy and to calculate 

H(X), we should have the probability function 

of the resource grade. Since all events 

between the two boundaries 0 and 100 are of 

the same probability in this state, it is possible 

to consider the grade density function as 

uniform U(0,100) [8]:    
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2.2. Value of information after explora-

tory drilling 

 

Based on the information obtained from 

drilling, it is possible to provide a block 

model in which the ore grade distribution has 

been estimated by such methods as the 

“nearest neighbor”, “inverse square distance 

weighting” and “kriging”. The latter is able to 

find the estimated grade as well as the 

estimation variance for every block. This 

method stands on stationary assumptions and 

one of the peculiarities of its results is that if 

the grade probability density function can be 

modeled as multi-Gaussian, then the error 

probability density function can be considered 

as Gaussian with an average equal to zero and 

a variance equal to an estimation variance of 

σ
2
k [13]. Therefore, under such conditions, 

relation 4 can be developed as follows [8]: 
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Since f(X|Y) is equivalent to the error 

density function around the estimated point 

f(z), therefore: 
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Supposing that grade follows the normal 

distribution N(μy,σ
2
y), where μy and σ

2
y are the 

data expectation and variance respectively, 

since the error follows a normal distribution 

function N(0, σ
2
K) , we can write[8]: 

dYdz
zz

Y
XHXYI

KKKK

yy

ii



































 






))
2

1
exp(

)2(

1
log()

2

1
exp(

)2(

1

)
2

1
exp(

)2(

1
)(),(

2

5.0

2

5.0

2

5.0









 

Using a variable change of 

K
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above equation will take the following form: 
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The total value of information gathered 

from the exploratory drilling is the sum of the 

values found from estimating all the blocks 

individually: 


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Hence, the value of information obtained 

from the drilling of the additional drillholes in 

estimating the block in question, is only a 

function of the block estimation variance [8]. 

 

3. Simulated annealing based algorithm  

 

3.1.  Assumptions 

 

The proposed algorithm is based on the 

following assumptions: 

1) The deposit is a single element one. 

2)  The deposit is a single population one. 

3) The variogram model fitted to the data 

is certain and lacks uncertainty. 

4) The lengths of all the composites are 

similar. 

5) The azimuths and dips of the additional 

drillholes are specified and they are equal for 

all of them. 

 

3.2.  Explanation 

 

Simulated annealing is a generic 

probabilistic approach for finding an 

approximation to the global optimum of a 

given objective function Φ [13-15]. From a 

previous solution Si, another solution Si+1 is 

achieved through a random perturbation of 

one of the variables in Si. The acceptance of 

Si+1 as a feasible solution is determined by the 

Metropolis criterion: 




















 )()()
)()(

exp(

)()(1

)(
1

1

1

1
ii

ii

ii

ii SSf
T

SS

SSif

SSPc
 

where T denotes a positive control 

parameter (also referred to as the annealing 

temperature). If Si+1 is accepted, a new 

solution Si+2 is derived from Si+1 and the 

probability Pc (Si+1→Si+2) is calculated with a 

similar criterion. As the process evolves, the 

annealing temperature is lowered based on a 

cooling schedule. This ensures that sub-

optimal solutions are accepted with decreas-

ing probability. 

The simulated annealing optimization 

method has been used in such grounds as 

computer engineering (pinpointing the 

location of the parts), university curricula, 

image processing, sampling design and so on, 
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but one of its applications, which is largely 

related to the objective of this paper, is its use 

in the solution of the additional sampling 

problems [16, 17]. To use this algorithm in 

finding the location of additional drillholes, it 

is necessary that first the decision variable, 

annealing function, objective function and 

decision mechanism be defined. Figure 1 

shows the structure of a simulated annealing 

algorithm that can also be used in finding the 

location of the additional drillholes. In this 

part of the framework and before going into 

evaluating the cost function, the problem 

parameters need to be defined. These are the 

number of additional drillholes that need to be 

drilled in the mineral resource area. It should 

be reminded also that for each additional 

drillholes, the problem variables are two, one 

for each coordinate. Another important point 

is the constraints having the aim to keep the 

optimum locations within the mineral 

resource region. These are implemented as 

inequality constraints in the SA, equal to min-

max box of the mineral resource region. 

 
Figure 1. Simulated annealing algorithm 

 

A) Decision variable 

The location of drillholes is defined as a 

permutation of real numbers P={x1,y1,…, 

xj,yj,….xn,yn}. There is a real pair (xj,yj) in the 

permutation for every drillhole that shows the 

collar longitude and latitude in the mineral 

region. On this basis, the number of the 

optimization variables is twice that of the 

additional drillholes. 

B) Annealing function 

This function is used to create random 

changes in the combination. The common 

annealing functions are “Boltzman”’s and 

“fast”. 

C) Objective function 

In every step of the simulated annealing 

algorithm, the new solution is evaluated with 

respect to the existing one according to the 

objective function. Based on equations 10 and 

11, the statistical value of information, 

obtained from the additional drilling, can be 

found from the following equation: 
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where N is the number of blocks and i is the 

kriging standard deviation of the i
th

 block after 

adding the data obtained from the additional 

drillholes to the set of the existing data which 

is a function of the location of the primary and 

additional drillholes and the fitted variogram 

model. Knowing that H(xi) is not a function of 

the decision variable and it is a constant 

number (6.64), we may define the 

optimization problem of the statistical value 

of information equivalent to the following 

constrained minimization problem:  
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where x(i) and y(i) are the longitude and 

latitude of the i
th
 drillhole respectively, n is 

the number of the additional drillholes, LX 

and UX are the longitudes of the western and 

eastern boundaries of the deposit respectively, 

and LY and UY are the latitudes of the 

southern and northern boundaries of the 

deposit respectively. 

To find the objective function, it is 

necessary that, first the location of the 

extracted samples be specified and then the 

estimation variance be calculated. Since it is 

not possible to definitely determine the exact 

location of where the drillhole meets the 

mineral, use was made of the 3D block model 

of the deposit and overburden to determine 

the appropriate location of the extractable 

samples from each drillhole. To do this, a 

program was written in the Matlab software 

so that, based on the location of the drillholes’ 

collars (the combination created in each 

iteration of simulated annealing) and the 3D 

block model, it could, first, estimate those 

parts of the drillholes that cut the mineral and, 

then, based on the constant sample length 

(equal to the composite length), determine the 

location of the samples extractable from each 

drillhole based on the location of its collar. 

The pseudo-code related to these calculations 

is shown in Figure 2.  

 
Function for determination of the samples locations based on the proposed coordinates of the drillholes’ 

collars 

1- For i=1 to N (No. of the additional drillholes) 

A) find the height of the upper level of the uppermost deposit block wherein the ith 

additional drillhole is located (hu).   

B) find the height of the lower level of the lowermost deposit block wherein the ith 

additional drillhole is located (hl). 

C) find the height of the upper level of the uppermost overburden block wherein the ith 

additional drillhole is located (ht). 

D) ht= height of the drillhole collar. 

E) K=1 

F) For K=hu to ht with a pace length L (L is equal to the composite length), iterate 

 Longitude of the Kth sample extractable from the ith additional drillhole= 

longitude of the collar of the ith drillhole 

 Latitude of the Kth sample extractable from the ith additional drillhole= 

Latitude of the collar of the ith drillhole 

 Heigth of the Kth sample extractable from the ith additional drillhole= hu-

[(2K-1)L/2] 

 K=K+1 

G)  if (hu-hl)-(K-1)L≥L/2 then, 

 Longitude of the Kth sample extractable from the ith additional drillhole= 

Longitude of the collar of the ith drillhole 

 Latitude of the Kth sample extractable from the ith additional drillhole= 

Latitude of the collar of the ith drillhole 

 Sample length = 
L×1)-(K-)h-(h lu  

 Heigth of the Kth sample extractable from the ith additional drillhole= 

2

L
×1)-K×(2-hu

 
Figure 2. Pseudo-code related to the determination of the location of the samples extractable 

from the proposed additional drillholes in each iteration of the simulated annealing 

 

  



 

 

 

 

 

 

 
26                 S. Soltani-Mohammadi and A. Hezarkhani  / JMM 49 A (1) (2013) 21 - 29 
 

D) Acceptance criteria 

 

To find the acceptance or refusal 

probability of the new combination when 

∆Energy > 0, use was made of Boltzman 

function [20].  

 

4. Evaluation of the algorithm 

proposed for Sungon copper mine 

 

The proposed algorithm should be 

evaluated from two aspects: 1) the parameters 

used in the simulated annealing, and 2) the 

performance. 

 

4.1.  Data 

 

To evaluate the proposed algorithm, 

Sungun copper mine in East Azarbaijan 

province, Iran, was selected. The mine 

contains 500 million tons of copper sulfide 

with an average grade of 0.76 % copper and 

0.01% molybdenum. Exploratory studies have 

revealed that Sungon mineral body is elliptical 

in shape drown east-westerly with a major 

axis of approximately 2.2 kilometers and a 

minor axis of nearly 1.1 kilometer [18]. The 

database of Sungon drillholes contains the 

data of 148 exploratory drillholes out of 

which 98 are primary and 50 are additional. 

Figure 3 shows the dispersion pattern of all 

the drillholes in the area. Since the locations 

of the additional drillholes in this area have 

been specified, it is possible that a general 

evaluation of the proposed algorithm be 

carried out based on a comparison between 

the existing results and those obtained latter if 

the related studies are ever done.  

As shown in Figure 3, most of the 

additional drillholes are located in the 

southern part of the deposit and only a few are 

scatteredly drilled in the northern part. This is 

the reason why use has been made of the data 

of the southern part containing 32 primary 

drillholes. 

 
Figure 3. Dispersion pattern of the primary and 

additional drillholes dug in Sungun area and 

the block model prepared for Sungon copper 

deposit at 1735 m level (red squares show the 

locations of the primary drillholes and black 

lozenges show those of the additional ones) 

 

The geological model of the deposit’s 

southern part was prepared based on the finite 

modeling method and converted into the block 

model based on a 50×50×50 block 

dimensions. Also, the 3D experimental 

variogram of the copper grade (figure 4) was 

calculated and a double-structure spherical 

model with the parameters C0=0, C1=0.07, 

C2=0.05, a1=71.5 and a2=208 was fitted to it. 

 
Figure 4. Experimental variogram of copper 

grade in the primary drillholes and the model 

fitted to it 

 

4.2.  Studying the convergence behavior 

of the proposed algorithm 

 

In most cases, what is done with the 

purpose of optimization is, in fact, an 

improvement. Optimization is to reach                

the optimal point and it comes after improve-

ment. This definition has two parts: 
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1) determination of the optimum point, and                 

2) improving the process of this determination 

[19]. 

Figure 5 shows the convergence trend 

during the implementation of the additional 

drillholes locating algorithm for the data of 

Sungun southern part.  

 
                                 a) 

 
                                 b) 

 
                                       c) 

Figure 5. Convergence trend during the 

implementation of the additional drillholes 

locating algorithm based on the statistical value 

of information approach in different iterations. 

a) Boltzman annealing function and the initial 

temperature of 465, b) fast annealing function 

and the initial temperature of 465, c) 

comparison of the performances of the two 

annealing trends 

The initial temperature was found based on 

the Kirckpatrick (13) algorithm (464
o
C) and 

the number of iterations before reannealing 

was 20 times the number of optimization 

variables, i.e. 800. Also, the number of 

reannealing was taken to be between 10 and 

50 [20]. Figures 5(a) and 5(b) show the max. 

and the min. values of the objective function 

accepted throughout the optimization process 

based on different annealing functions (ie. 

Boltzman and fast annealing functions). It is 

to be noted that in the initial phase (when the 

temperature is high), the acceptance 

probability of the combination of which the 

objective function value has less desirability 

with respect to the existing one, is more and it 

decreases with a fall in the temperature. After 

every reannealing, when there is a sudden rise 

in the temperature, again the combinations 

with more energy have been accepted. Figure 

5(c) shows that Boltzman annealing 

function’s performance is better than that of 

the fast one in optimum locating of the 

additional drillholes. As shown in figure 6, the 

temperature has risen again during the 

reannealing process after 800 iterations and 

hill climbing has occurred. 

 
Figure 6. Locations of the additional drillholes 

proposed by the algorithm based on the 

statistical value of information approach (block 

color is based on the estimation variance) 

 

4.3. Results evaluation 

 

The proposed optimum locations for the 

additional drillholes are shown in figure 6. 

Figure 7(a) shows the value of information 
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from the primary drillholes, figure 7(b) shows 

the value of information from the exploratory 

drillholes after adding the data from the 

additional drillholes at the dug points, and 

figure 7(c) shows the value of information 

after adding the data from the additional 

drillholes at the proposed points. A 

comparison of these three figures shows that 

drilling the additional drillholes at the 

proposed points has not only caused the 

highest increase in the statistical value of 

information in all the blocks, but the value has 

also increased more homogeneously in all the 

blocks. 

 
Figure 7. Maps of the value of information for 

every block obtained from digging. a) based 

only on the information of the primary 

drillholes, b) based on the information of the 

primary drillholes and that of the additional 

ones dug in the area, and c) based on the 

information of the primary drillholes and that 

of the additional ones proposed by the 

algorithm 

5. Conclusions 

 

All the previous studies on the issue of 

optimum locating of additional drillholes are 

based on minimizing the kriging variance. 

Efforts has been made in this paper, for the 

first time, to make use of the statistical value 

of information as a new criterion for this 

purpose. Selection of the block dimensions is 

a factor that affects the precision of the 

studies. Reducing block dimensions will 

increase not only the precision of assessing 

the samples extractable form the additional 

drillholes, but also the preciseness of 

determining the objective function. Yet, this 

reduction will increase the time needed for 

calculations for two reasons: 1) the number of 

blocks will increase which causes an increase 

in the number of points for which the 

objective function has to be determined as a 

function of the estimation variance, and 2) the 

composite length should also reduce which 

means an increase in the number of samples, a 

bigger kriging matrix, and more time to solve 

it for every block. Although the function of 

the statistical value of information makes 

possible the comparison of two different 

information sets, it lacks applicability in 

evaluating economic information and it is 

necessary that the additional drilling 

information be evaluated from the economic 

point of view in later studies. This research 

may be continued, using a combination of 

heuristics and direct search methods, to 

reduce the calculation time. 
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