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Abstract  
 

From a geostatistical viewpoint, non-linear interpolation is an attempt to estimate the conditional expectation, 

and further the conditional distribution of grade at a location, as opposed to simply predicting the grade itself. There 

are many non-linear methods now available. Disjunctive Kriging is one of them. This paper presents a comparison of 

ordinary kriging and disjunctive kriging in Choghart iron ore deposit in Yazd province, Iran. The case study consists 

of borehole samples measuring the Fe concentration. The sample data used in this study consist of exploration 

drilling data, suitably composited. The data set is irregularly spaced and has an almost normal distribution. Fe grade 

was selected as the major regional variable on which the present research has focused. To carry out ordinary kriging 

and disjunctive kriging, spherical model was fitted over empirical variogram. To estimate the Iron grade, ordinary 

kriging and disjunctive kriging methods were used. All of the exploitable blocks with dimensions 20*20*12.5 (m3) 

were estimated. In the case of Choghart iron ore deposit the average of disjunctive kriging estimation error variance 

is 72.076 while the average of ordinary kriging estimation error variance is 100.278. So estimation with ordinary 

kriging is more risky.  

 

Key words: geostatistics; ordinary kriging; disjunctive kriging; estimation error variance; Choghart iron ore 

deposit. 

 
1. Introduction 

 

From a geostatistical point of view, non-

linear interpolation is an attempt to estimate 

the conditional expectation, and further the 

conditional distribution of grade at a location, 

as opposed to simply predicting the grade 

itself [1]. Linear estimation of regionalized 

variables (for example by inverse distance 

weighting or ordinary Kriging) results                    

in relatively high estimation variances, i.e.  

the estimates have very low precision. 

Assessment of project economics (or other 

critical decision making) based on linear 

estimation is therefore risky. Non-linear 

estimation methods like disjunctive kriging 

perform better and the lower estimation 

variance allows less risky economic decision-

making.  

Another advantage of disjunctive kriging 

over ordinary kriging is that it allows 

estimation of functions of the primary 

variable, which here is the grade (Fe %) of the 

ore. In particular it permits estimation of 

indicator functions defined using thresholds 

on the primary variable. Miners must decide 

for each unsampled location whether the ore 

is to be sent for processing (if its concentra-
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tion exceeds the economic threshold) or to the 

waste dump. For this, it is necessary to 

determine the probability that the true value 

exceeds the threshold. The main advantage           

of disjunctive kriging over the simpler 

techniques is in providing these probabilities. 

These probabilities should enable a miner or 

his advisor to assess the risks associated with 

imprecise estimates. The probability that a 

critical value is exceeded depends on the 

distribution function. Thus the distribution 

function of the random variable used for 

thresholding needs to be estimated at specified 

locations. Disjunctive kriging involves trans-

forming data to a normal distribution and then 

determining for each point of interest the 

probability that the true value exceeds the 

threshold. 

Gaussian Disjunctive Kriging (DK) is 

based on an underlying “diffusion” model 

(where, in general, grade tends to move from 

lower to higher values and vice versa in a 

relatively continuous way). The initial data 

are transformed into values with a Gaussian 

distribution, which can easily be factorized 

into independent factors called Hermite 

polynomials as it is indicated by Rivoirard [2] 

for a full explanation and definition of 

Hermite polynomials and disjunctive kriging. 

In fact, any function of a Gaussian variable, 

including indicators, can be factorized into 

Hermite polynomials. These factors are then 

kriged separately and recombined to form the 

DK estimate. The major advantage of DK is 

that you only need to know the variogram of 

the Gaussian transformed values in order to 

perform all the krigings required.  

The basic hypothesis made is that the 

bivariate distribution of the transformed 

values is bigaussian, which is testable. 

Although order relationships can occur, they 

are very small and quite rare in general. A 

very powerful and consistent change of 

support model exists for DK: the discrete 

Gaussian model [3]. 

Gaussian disjunctive kriging has been 

proven that it is relatively sensitive to 

stationary decisions, (in most cases simple 

kriging is used in the estimation of the 

polynomials). DK should thus only be applied 

to strictly homogeneous zones. 

In this study a comparison is made between 

the results of ordinary kriged and disjunctive 

kriged grade estimates of Choghart Iron Ore 

Deposit. This includes a comparison of grade 

estimated error variance and average grade 

estimated by ordinary kriging and disjunctive 

kriging. Advantageous of disjunctive kriging 

over ordinary kriging is also presented. In 

application of disjunctive kriging, all of the 

statistical and geostatistical calculations and 

graphical output generated for this case study 

was made using the software system 

developed by the author. For the application 

of disjunctive kriging a series of codes in 

Matlab software have been used. For using 

ordinary kriging author has used Wingslib 

Software. 

 

2. Theory 

 

2.1.  Ordinary Kriging 

 

Ordinary kriging is a spatial interpolation 

estimator used to find the best linear unbiased 

estimate of a second-order stationary random 

field with an unknown constant mean as 

follows: 
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Where )(ˆ 0xZ : kriging estimate at location

0x
; Z (xi): sampled value at location xi; and 

λi: weighting factor for Z (xi). The estimation 

error is:  
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Where Z(x0): unknown true value at x0; and 

R(x0): estimation error. For an unbiased 
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estimator, the mean of the estimation error 

must equal zero. Therefore, E{R(x0)} =0 

and 



n

i

i

1

1 . 

The best linear unbiased estimator must 

have minimum variance of estimation error. 

The minimization of the estimation error 

variance under the constraint of unbiasedness 

leads to a set of simultaneous linear algebraic 

equations for the weighting factors, λi, which 

can be solved by an optimization routine and 

the method of Lagrange multipliers [4]. 

 

2.2.  Disjunctive Kriging 

 

Principles of disjunctive kriging of blocks 

and estimating reserves were given in detail 

by earlier workers [5]. Basically, in DK, 

variable Z0 to be estimated is decomposed 

into a sum of disjoint (uncorrelated) 

components of sample values. When kriging 

of the separate components is possible, the 

procedure is feasible, i.e., when the joint 

probability density function of Z0 (or the 

transformed Yo) and each sample Za (or Ya) is 

of isofactorial type. 

In practice, a continuous variable like iron 

grade of an ore deposit can always be 

transformed by anamorphosis into a guassian 

equivalent Y, and then only a joint Guassian 

hypothesis for the probability density function 

(PDF) of samples and blocks is required. 

We start by transforming the measured 

variable, Z(x), to one Y(x) that has a standard 

normal distribution such that: 

  )]([)( xYxZ      

This is done using Hermite polynomials, 

which are related to the normal distribution by 

Rodriguez’s formula:  
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in which g(y) is the normal probability 

density function, k is the degree of the 

polynomial taking values 1, 2,… and 
!

1

k

is a 

standardizing factor. The first two Hermite 

polynomials are: 
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Thereafter the higher order polynomials 

obey the recurrence relation: 
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The Hermite polynomials are orthogonal 

with respect to the weighting function (-y
2
/2) 

on the interval from   to  ; they are 

independent components of the normal 

distribution of ever increasing detail. Many 

functions of Y(x) can be represented as the 

sum of Hermite polynomials: 

,)}({)}({)}({)}({ 2211  xYHfxYHfxYHfxYf oo

     Because the polynomials are orthogonal 

we can calculate the coefficients required for 

Eq. (1) as: 
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The transform is invertible, and so we can 

express the results in the original units of 

measurement. To krige the variable of 

interest, Z(x), we simply krige the Hermite 

polynomials separately and sum their 

estimates to give the disjunctive kriging 

estimator: 
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Using n points in the neighborhood of 

estimation point x0 where we want an estimate 

we estimate the Hermite polynomials by 
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where the ik  are the kriging weights which 

are found by solving the simple kriging 

equations: 
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where )( ji xx  is correlogram between points 

xi and xj.  

In particular, the procedure enables us to 

estimate Z(x0) by 
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The kriging variance of )}({ˆ xYHk
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And the disjunctive kriging variance of 

)]([ˆ 0xYf is 
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Once the Hermite polynomials have been 

estimated at x0 we can estimate the 

conditional probability that the true value 

there exceeds the critical value, zc. The 

transformation Z(x) =F[Y(x)] means that zc 

has an equivalent yc on the standard normal 

scale. Since the two scales are monotonically 

related their indicators are the same: 
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For ])([ cyxY  , which is the complement 

of ])([ cyxY  , the kth Hermite coefficient is 
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The coefficient for k=0 is the cumulative 

distribution to yc: 
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And for larger k 
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The indicator can be expressed in terms of 

the cumulative distribution and the Hermite 

polynomials: 
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 Its disjunctive kriging estimate is obtained by 
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where L is some small numbers.  

The kriged estimates }({ˆ
0xyH k

k
) approach 0 

rapidly with increasing k, and so summation 

need extend over only few terms. This is the 

same as .])([ˆ
0 c

DK zxZ   

 In this instance, we are interested in the 

exceedence probability as follows:  
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3. Case Study 

 

The Choghart iron deposit (55°28΄2˝E, 

31°42΄00˝N) occurs in the Bafq mining 

district of Central Iran, 12 km northeast of 

Bafq town and 125 km southeast of Yazd city 

(Fig. 1).  

 

 
Figure 1. Geographic map showing the 

location of Choghart iron ore deposit in the 

Bafq mining district of Iran 

 

The origin of Choghart iron deposit and 

other similar iron oxide deposits in the Bafq 

mining district, like their counterparts in the 
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rest of the world, has been the subject of 

continuing controversy for local geologists 

with the difference that the controversy has 

been fueled by the lack of absolute age 

determinations, accurate isotopic and fluid 

inclusion studies, and reliable analytical data. 

Some authors believe that these have been 

formed directly from magmas filling volcanic 

diatrems or flowing as lavas [6-8] while 

others suggest metasomatic replacement of 

preexisting rocks by hydrothermal solutions 

charged with iron leached from cooling felsic 

plutons [9-10]. 

Choghart iron ore deposit was explored by 

134 boreholes (Fig. 2). The data file gives the 

name of each drill, the coordinate of drills, the 

grade of each element, measure depth, 

azimuth of each drill, the inclination of 

boreholes and level, and lithology coding etc.  

In general, the drilling grid is irregular (see 

Fig. 2). As the bench height for mining is 

fixed at 12.5 m, borehole samples were 

regularized at 12.5 m intervals. 

 

 
Figure 2.  Borehole sample location map of 

Choghart iron ore deposit 

 

The histogram of the iron concentrations 

(Fig. 3) is almost normal. Under these 

conditions, as suggested by Chile` s and 

Delfiner [5], a guassian model is preferred. 

Summary statistics for the data set (see Table 

1) exhibit the very lowly skewed nature of the 

distribution.  

 
Figure 3. Histogram of borehole sample iron 

concentrations of Choghart deposit 

 
Table 1. Summary statistics for the iron grades of 

the Bore hole data 

Data 

set 
 N 

  Mean     

(%) 
SD 

  Min.       

(%) 

Max. 

(%) 
Sk 

Bore 

hole 
  2804   58.78 7.83   31.26 69.95 -1.303 

SD – Standard deviation; Sk - Skewness 

 

4. Variography 

 

Variography was done in different 

directions. The result has been shown in Table 

2. The sill and maximum range in different 

directions are almost the same. So there is             

no severe anisotropy. Therefore only an 

omnidirectional variogram is considered for 

modelling.  

Figure 4 shown omnidirectional variogram 

and its fitted model for Choghart iron ore 

deposit. Model consists of a pure nugget 

effect with 0.405 plus a spherical scheme with 

sill 1 and range 270 m (Fig. 4). 
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Table 2. Result of variography of iron 

concentration for Choghart deposit in different 

directions  

Azimuth Dip 
Sill 
(%)2 

Nugget 
effect (%)2 

Maximum 
range (m) 

0 45 1.1 0.405 270 

0 90 1 0.4 270 

45 0 1.1 0.410 250 

45 90 1 0.405 280 

90 0 1.15 0.405 290 
 

 
Figure 4. Omnidirectional variogram and its 

fitted model for Choghart iron ore deposit 

 

5. Estimation 

 

To verify the practical usefulness of 

disjunctive kriging and ordinary kriging to 

estimate block values, the theory of both 

methods have been applied to Choghart iron 

ore deposit. For each 20 m × 20 m × 12.5 m 

panel, the Fe grade was calculated by using 

disjunctive kriging and ordinary kriging. Figs. 

5 and 6 respectively illustrate the estimated 

iron concentration computed by Dk and Ok 

for the level of 1000 m for Choghart iron ore 

deposit. Fig. 7 and Fig. 8 respectively show 

the estimated error variance maps computed 

by DK and OK. The estimate of the grade of 

the survey samples only is not enough. So we 

seek to forecast the probability of the Fe grade 

pass the threshold. One of the most important 

advantageous of Dk over Ok is that Dk 

method can provide the probability of the 

grade pass the threshold value. Fig. 9 shows 

probability map of the grade above threshold 

of 40 %.  

 
Figure 5. Estimated iron concentration 

computed by Dk 

 

 
Figure 6. Estimated iron concentration 

computed by Ok 

 

 
Figure 7. Estimated error variance maps 

computed by DK 



 

 

 

 

 

 

 
              A. Akbar Daya and S. Zaremotlagh  / JMM 49 A (1) (2013) 1 - 8                                             7 

 

 
Figure 8. Estimated error variance maps 

computed by OK 

 
Figure 9. Probability map of the grade 

above threshold of 40 % 

 

6. Conclusion 

 

The study showed that both disjunctive 

kriging and ordinary kriging can be applied 

successfully for estimating and modeling the 

grade of Choghart iron ore deposit. Linear 

estimation of regionalized variables by 

ordinary Kriging results in high estimation 

variances, i.e. the estimates have very low 

precision. So evaluation of project economics 

based on ordinary kriging estimation is more 

risky. Disjunctive kriging perform better and 

the lower estimation variance allows less risky 

economic decision-making. In addition DK is 

able to model the uncertainty of mapping Fe 

concentrations in an iron ore deposit. 

Ordinary kriging cannot provide such maps. 

In the case of Choghart iron ore deposit the 

average of disjunctive kriging estimation error 

variance is 72.076 while the average of 

ordinary kriging estimation error variance is 

100.278 (table 3).  

 
Table 3.  Results of ordinary kriging (OK) and 

disjunctive kriging (DK) 

 DK OK 

Mean 54.88799 55.2908 

Error variance 72.07672 100.2786 

Min value 31.17 33.33 

Max value 67.718 68.11579 

   

So estimation with ordinary kriging is 

more risky. As compared to the disjunctive 

kriging mean of 54.89, the mean of the 

ordinary kriging is 55.29, which is almost the 

same. However, the minimum value of the 

disjunctive kriging estimator is 31.17 as 

against 33.33 in the case of ordinary kriging. 

The maximum value of disjunctive kriging is 

67.72, whereas that of ordinary kriging is 

68.12. In DK, a conditional probability 

distribution is estimated for mining blocks. 

This means that the average grade over each 

mining block, of a function describing the 

distribution of point grades in the space, is 

estimated. 
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